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Abstract 

In this paper we present a method to reduce the interference 
between shared spectrum multistatic radars by performing 
joint adaptive pulse compression (APC) in conjunction with 
adaptive beamforming.  A recently proposed algorithm 
based on a Minimum Mean Square Error (MMSE) 
formulation, Multistatic Adaptive Pulse Compression 
(MAPC) [1]-[3] has been shown to successfully suppress 
both range sidelobes and interference from multiple radars 
operating in the same spectrum.  Here, we combine an 
adaptive beamforming component with the MAPC algorithm 
to enable further mutual interference suppression and hence 
better estimation performance such that the number of 
multistatic radars simultaneously operating in the same 
spectrum may be increased for the same mean-square 
estimation error.   

1 Introduction 

The increasing demand for spectrum usage rights by the 
communications industry coupled with the requirement for 
wider instantaneous bandwidths for radar applications is 
creating an ever growing need for more efficient use of the 
radio frequency (RF) spectrum.  It is well known that two or 
more radars operating in close proximity, at the same time, 
and in the same spectrum will interfere with one another – 
often to the point of achieving complete RF fratricide.  It is 
impossible to generate a set of waveforms that are 
orthogonal to one another at all possible respective delays, 
and therefore a large target return from one waveform will 
appear as a smaller target return from the other waveform(s) 
as well.  However, accurate joint estimation of multiple 
radar range profiles can be accomplished by iteratively 
cancelling the mutual interference between the multiple 
received return signals.  This work is an extension of the 
Multistatic Adaptive Pulse Compression (MAPC) algorithm 
[1]-[3] wherein multiple known transmitted waveforms are 

adaptively pulse compressed using Reiterative Minimum 
Mean Square Error (RMMSE) estimation [4]-[6].  Here, we 
combine an adaptive beamforming component with the 
MAPC algorithm to enable better estimation performance 
and to increase the number of multistatic radars which can 
simultaneously operate in the same spectrum.  Note that this 
work addresses the interference resulting from mainbeam 
transmission of other radars which are received in the 
receiver sidelobe of a particular radar return signal of 
interest.  We currently assume that element tapering or 
spatial nulling on transmit can sufficiently suppress 
sidelobe-transmitted signals that would otherwise be present 
in the receiver mainbeam of the return signal of interest.  
The more general formulation which includes both of these 
sources of interference as well as sidelobe-transmit/sidelobe-
receive will be addressed in a subsequent paper. 

2 Multistatic Adaptive Pulse Compression 

For K waveforms transmitted simultaneously in the same 
spectrum in close proximity, we denote the discrete-time 
version of the kth waveform as the column vector sk having 
length N, and rk as the spatial steering vector corresponding 
to the angle-of-arrival (AOA) of the kth return signal at the 
receiver of interest.  We assume a uniform linear array with 
M elements.  For this receiver, the lth time sample of the set 
of received radar return signals on the mth antenna element is 
defined as  
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for l = 0, …, L + N – 2, where xk(l) = [xk(l) xk(l − 1) … xk(l − 
N + 1)]T  are N contiguous samples of the range profile 
impulse response at delay l with which the transmitted 
waveform sk  convolves, v(l) is additive noise, (·)T is the 
transpose operation, and L is the number of range bins in the 
processing window.  By collecting N  samples of the 
received radar return signal, the system response model (for 
the mth antenna element) is expressed as 
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where y(l) = [y(l) y(l + 1) … y(l + N − 1)]T  is N contiguous 
samples of the received signal, Xk(l) = [xk(l) xk(l + 1) … xk(l 
+ N − 1)]T  is an N × N matrix, and v(l) = [v(l) v(l + 1) … v(l 
+ N − 1)]T.  The kth received radar signal after beamforming 
is given by 
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where Y(l) = [y1(l) y2(l) … yM(l)]T  is a matrix containing the 
received signal vectors from each of the M antenna 
elements, and bk is the beamformer weight vector.  By 
substituting (2) into (3), the kth radar return signal after 
beamforming can be represented as 
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where ηki = bk

H ri is the correlation between the kth 
beamformer weight vector and the spatial steering vector of 
the ith received signal, and uk(l) is the additive noise after 
beamforming. 
 
Under the standard matched filtering formulation [7] we 
would assume that the mutual interference is noise.  As such, 
the application of the matched filters involves the 
convolution of each of the K beamformed return signals with 
the time-reversed complex conjugate of its respective 
transmitted waveform.  The matched filtering operation can 
be expressed in the digital domain as 
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where (·)H is the complex conjugate transpose, or Hermitian, 
operation.  However, as ideal matched filtering assumes the 
presence of only a single received signal in white Gaussian 
noise (which the mutual interference is most certainly not), 
the matched filter will perform quite poorly in the multistatic 
scenario.   
 
To compensate for the presence of the other K-1 return 
signals, the MAPC formulation [1]-[3] replaces the matched 
filter with an adaptive filter based on RMMSE estimation, 
which has been shown to provide excellent performance in 
the multistatic scenario.  In general, the MAPC filter for the 
kth waveform and lth range bin, can be shown to take the 
form 
 

  (6) ( ) 2

1
( ) | | ( )

K

k k k i i k
i

l l lρ η −

=

⎛
= ⎜

⎝ ⎠
∑w C

 
where Uk = E[uk(l)  uk

H(l)] is the noise covariance matrix.  
The N × N structured signal covariance matrix Ck(l) is 
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where ρk(l) = E[|xk(l)|2] is the expected power of xk(l), and sk,n 
contains the elements of the kth waveform shifted by n 
samples and zero-filled in the remaining n samples, e.g. sk,2 
= [0 0 sk(0) … sk(N − 3)]T and sk,–2 = [sk(2) … sk(N − 1) 0 0]T.   
 
The beamformer weight vector bk can take several forms.  
The original MAPC algorithm [1]-[3] utilized a non-adaptive 
beamformer with bk equal to the spatial steering vector of 
the kth signal rk.  While the non-adaptive beamformer does 
suppress the interfering signals, significantly greater 
interference suppression can be obtained through the use of 
an adaptive beamformer which places nulls in the directions 
of the interfering signals.  Here, we use the linearly 
constrained minimum-variance beamformer [8], with an 
adaptive weight vector (for the kth received signal) given by 
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Rk is the M × M spatial covariance matrix with the kth 
received signal excised from the data.  It is critical that the 
kth received signal be excised from Rk.  If it is not, then the 
adaptive beamformer will attempt to place a null in the 
direction of the signal that is being estimated.  The kth signal 
component at the lth range bin is removed from the received 
signal of each of the M spatial channels by projecting the 
temporal received signal of each of the M spatial channels 
onto the temporal noise subspace of the N × N structured 
signal covariance matrix Ck(l) of the kth signal component.  
The temporal noise subspace is associated with the 
eigenvector associated with the smallest eigenvalue of Ck(l).  
Identical temporal processing at a given time instant is 
implemented on each of the M spatial input channels.  With 
the kth received signal excised from the data, bk places spatial 
nulls in the directions of the remaining K − 1 multistatic 
signals, thereby enabling more of the adaptive degrees-of-
freedom to be applied for the adaptive pulse compression of 
each individual received signal. 
 
Both the MAPC filters (6) and the adaptive beamformer 
weight vectors (8) are functions of the estimated range 
profiles ( )ˆkx l , which in practice are not available at the 
receiver.  Therefore, a reiterative scheme is utilized to 
estimate the range profile.  Assuming the noise covariance is 



white Gaussian, Uk simplifies to σv
2I, where I is the NN ×  

identity matrix and σv
2 is the noise power, which can be 

assumed known since internal thermal noise dominates the 
external noise at microwave frequencies (where most radars 
operate).  The initial estimates of the K range profiles can be 
obtained either by using standard matched filtering or by 
initializing the power estimates of all of the range cells to be 
equal and assuming the noise is negligible initially.  In the 
latter case, (6) reduces to  
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for , where the matrix Kk ,,2,1= iC~  is defined as 
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The adaptive beamformer is initialized as bk = rk.  A 
predetermined number of stages of estimation are performed 
where the result of the previous stage is utilized to compute 
the MAPC filters and the adaptive beamformer weight 
vectors for the current stage.  We denote the adaptive 
beamforming MAPC algorithm as MAPC-AB.  A block 
diagram of the MAPC-AB algorithm is shown in Fig. 1. 
 

 
 

Fig. 1.   MAPC-AB block diagram 
 
The operation of the MAPC-AB algorithm progresses as 
follows.  After (9) is applied, as in (5) with sk replaced by 

kw~ , and the initial range cell power estimates have been 
obtained, (6) is subsequently used to estimate the refined 
receive filters.  The estimate of the signal covariance matrix 
Ck(l) is then utilized to excise the kth signal from the M 
received signals.  At this point the adaptive beamformer 

weight vector is computed using (8) and applied to the data.  
The refined received filters are then re-applied to the 
adaptively-beamformed received signals and the range cell 
complex amplitudes are re-estimated.  The refined receive 
filters are better able to mitigate the masking effects caused 
by waveform cross-correlation and range sidelobes due to 
the fact that they are estimated based upon some a priori 
knowledge regarding the relative locations of larger targets, 
which was obtained in the previous stage.  In addition, the 
power of the interfering signals is significantly decreased by 
the adaptive beamformer.  The re-estimation of the 
individual receive filters, the adaptive beamformer weight 
vector, and range cells is repeated for a pre-determined 
number of stages.  It has been determined via simulation 
that, given the presence of large masking targets, 
approximately 3 to 6 stages are required for the range profile 
estimates to reach the noise floor. 

3 Simulation Results 

To demonstrate the performance of the MAPC-AB 
algorithm, we compare its performance with that of the 
MAPC algorithm and that of a bank of matched filters.  
First, we consider the simultaneous reception of four random 
polyphase waveforms of length N = 30 received at varying 
angles off boresight of a 21-element uniform linear array.  
Two cases are examined, both involving dense stationary 
target scenarios.  For the first case, the angles of arrival of 
the received signals are separated by 10°, and for the second 
case the separation is decreased to 5°.  In both scenarios, the 
noise is -60 dB relative to the largest target power before 
beamforming (with several much smaller targets closer to 
the noise floor), and four stages of reiteration are utilized.  
The performance of each algorithm is assessed by 
computing the mean-square error (MSE) metric associated 
with estimating the ground truth complex amplitudes of the 
range profile. 
 
For the first case, the angles of arrival of the received signal 
are 0°, −10°, −20°, and +10° off boresight.  As seen in Fig. 2 
the ground truth of the respective range profiles (represented 
in black) is comprised of many closely spaced targets with 
highly disparate power levels.  As expected, the matched 
filter (in green) performs poorly due to the accumulated 
effects of range sidelobes and residual multistatic 
interference.  In contrast, both MAPC (in red) and MAPC-
AB (in blue) are able to suppress both the range sidelobes 
and the multistatic interference, significantly outperforming 
the matched filter with MAPC-AB markedly better than 
MAPC.  In terms of MSE, the matched filter yields an MSE 
of −10 dB, the MSE of MAPC is −40 dB, and the MSE of 
MAPC-AB is −48 dB. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the separation between the angles of arrival of the 
received waveforms is decreased, the improvement in 
estimation performance of MAPC when adaptive 
beamforming is utilized becomes more dramatic.  
Simulation results for signals received at angles of 0°, −5°, 
−10°, and +5° off boresight are shown in Fig. 3.  For this  
scenario, the MSE of the matched filter is −7 dB, the MSE 
of MAPC is −33 dB, and the MSE of MAPC-AB is again 
−48 dB, an improvement of 15 dB over MAPC and 41 dB 
over the matched filter. 
 
In order to ascertain the performance of the MAPC-AB 
algorithm as the number of radars increases, a Monte Carlo 
simulation was performed with the number of multistatic 
radars varying from 2 to 30.  A total of 100 independent 
trials were randomly generated for each number of 
multistatic radars, with the angles of arrival of the received 
signals randomly distributed between –30° and +30° off 
boresight, and with randomly generated dense-target range 
profiles similar to those seen in Figs. 2 and 3. As before, 
length N = 30 random polyphase waveforms are utilized for 
the simulations.  Each estimation approach (bank of matched 
filters, MAPC, MAPC-AB) was applied to the randomly 
generated scenarios and the average MSE was computed.  
These results are shown in Fig. 4.  When greater than 12 
radars are present, the MSE performance of MAPC-AB is 
approximately 4 dB better than that of MAPC.  The greatest 
performance increase is obtained when between 7 and 12 
multistatic radars are operating, where the MSE of MAPC-
AB is as much as 15 dB less than MAPC.  It should be noted 
that the MSE obtained for both MAPC and MAPC-AB when  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Range profile estimation for multistatic radar reception (black: ground truth, green: matched filter, 
red: MAPC, blue: MAP-AB). 

 
30 multistatic radars are operating is less than that of the 
matched filter with only 2 multistatic radars. 

4 Summary 

The approach described in this paper enables shared-
spectrum multistatic radar by performing joint adaptive 
pulse compression in conjunction with adaptive 
beamforming.  By combining joint RMMSE estimation with 
adaptive beamforming, the estimation performance of 
MAPC is increased.  Simulation results indicate a decrease 
in MSE of 8 dB to 15 dB when adaptive beamforming is 
utilized, depending on the amount of angular separation 
between the multistatic signals.  It was found via Monte 
Carlo simulation that the greatest increase in performance 
was obtained when between 7 and 12 multistatic radars are 
operating.  The addition of adaptive beamforming to MAPC 
allows decreased angular separation without an attendant 
decrease in estimation performance, enabling a higher 
density of multistatic radars. 
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Fig. 4.  Monte Carlo simulation for varying numbers of 
multistatic radars (green: matched filter, red: MAPC, blue: 
MAPC-AB). 
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